Enhanced Femtosecond Nonlinear Optical Susceptibility and Terahertz Conductivity in MoSe2‐Noble Metal Nanocomposites

Author:

Mondal Koushik1,Haldar Amit1,Pramanik Ashim2,Layek Rashbihari2ORCID,Banerjee Dipanjan34,Soma Venugopal Rao34ORCID,Pal Shovon1ORCID,Kumbhakar Pathik2ORCID

Affiliation:

1. School of Physical Sciences National Institute of Science Education and Research Bhubaneswar An OCC of HBNI Jatni, Khurda Odisha 752050 India

2. Department of Physics National Institute of Technology Durgapur Durgapur West Bengal 713209 India

3. Advanced Centre of Research in High Energy Materials (ACRHEM) DIA‐CoE University of Hyderabad Hyderabad Telangana 500046 India

4. School of Physics University of Hyderabad Hyderabad Telangana 500046 India

Abstract

AbstractCreating heterojunctions or composites by incorporating noble metals offers a remarkable means to modulate the electronic charge transfer and the nonlinear optical (NLO) properties in 2D transition metal dichalcogenides (TMDCs). The response of such 2D‐TMDC‐noble metal composites to femtosecond (fs) infrared (IR) and terahertz (THz) radiation, however, remains vastly unexplored. While the linear optical characteristics of a prototypical 2D‐TMDC, namely, MoSe2 nanosheets incorporated with noble metal (such as Au, Pt, and Ag) nanoparticles in the UV–Vis and the THz spectral range, the NLO characteristics are measured using a 70‐fs pulse at 800 nm excitation is investigated. The results demonstrate a clear reduction of band gap with the incorporation of noble metals in MoSe2, indicating an effective charge transfer mechanism at play. Notably, the MoSe2‐noble metal nanocomposites depicted a significant enhancement in the THz conductivities. In addition, a dramatic 4‐fold enhancement in the third‐order nonlinear coefficient and ≈2‐fold enhancement in the third‐order NLO susceptibility is achieved in MoSe2‐Ag nanocomposite. These results univocally suggest that the noble metal‐based composites with suitable charge transfer channels promote enhanced carrier mobilities and tunable electron transfer dynamics, making these hybrid materials promising candidates for optoelectronic applications both at IR and THz frequencies.

Funder

Defence Research and Development Organisation

Department of Atomic Energy, Government of India

Science and Engineering Research Board

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3