Ultra‐Broadband Near‐Infrared Luminescence from a Vanadium‐Activated Phosphate Glass

Author:

Wang Weirong1ORCID,Chen Zhi23,Yu Guanliang4,Zhang Yeming5,Jiang Chun6,Qiu Jianrong7

Affiliation:

1. College of Electronic and Information Engineering Hebei University Baoding 071002 China

2. Zhejiang Lab Hangzhou 311100 China

3. College of Materials Science and Engineering Key Laboratory of Advanced Materials of Yunnan Province Kunming University of Science and Technology Kunming Yunnan 650093 China

4. School of Science Shanghai Institute of Technology Shanghai 201418 China

5. School of Chemistry and Materials Engineering Huaihua University Huaihua 418000 China

6. State Key Laboratory of Advanced Optical Communication Systems and Networks Shanghai Jiao Tong University Shanghai 200240 China

7. State Key Laboratory of Extreme Photonics and Instrumentation College of Optical Science and Engineering Zhejiang University Hangzhou 310027 China

Abstract

AbstractBroadband near‐infrared (NIR) emitting materials have gained considerable attention for their applications in lighting, displays, sensing, bio‐imaging, and optical amplification. Recently, numerous excellent broadband NIR emitting materials are developed by introducing Cr3+, Bi+, or Ni2+ ions to various hosts. However, there is a notable absence of reports on ultra‐broadband NIR emitters spanning the entire telecommunication window as well as the NIR‐I (700–1000 nm) and NIR‐II (1000–1700 nm) biological windows activated by vanadium ions. Herein, the study presents, for the first time to the best of the knowledge, ultra‐broadband NIR emission ranging from 850 to 1600 nm (peaking at ≈1000 nm) at room temperature in vanadium‐doped phosphate glass. Detailed spectra and microscopic structure analysis reveal that two V3+‐emitting centers predominantly contribute to the ultra‐broadband emission, corresponding to 3T2(3F)→3A2(3F) spin‐allowed and 3T2(3F)→1E(1D) spin‐forbidden electron transitions of tetrahedrally coordinated V3+ ions. Notably, the tunability of NIR emission peak is demonstrated by adjusting the local glass structure or the vanadium doping content. Moreover, glass‐converted light‐emitting diodes (gc‐LEDs) are fabricated from vanadium‐doped glass, and the potential applications are demonstrated. The work opens new avenues for the design and fabrication of broadband NIR‐emitting materials and opto‐electronic devices.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Xinjiang Uygur Autonomous Region

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3