Infrared Optical Anisotropy in Quasi‐1D Hexagonal Chalcogenide BaTiSe3

Author:

Zhao Boyang1ORCID,Mei Hongyan2ORCID,Du Zhengyu1,Singh Shantanu1,Chang Tieyan3,Li Jiaheng4,Ilyas Batyr5,Song Qian5,Liu Ting‐Ran1,Shao Yu‐Tsun16,Comin Riccardo5,Gedik Nuh5,Settineri Nicholas S.78,Teat Simon J.7ORCID,Chen Yu‐Sheng3,Cronin Stephen B.9ORCID,Kats Mikhail A.2ORCID,Ravichandran Jayakanth169ORCID

Affiliation:

1. Mork Family Department of Chemical Engineering and Materials Science University of Southern California Los Angeles CA 90089 USA

2. Department of Electrical and Computer Engineering University of Wisconsin–Madison Madison WI 53706 USA

3. NSF's ChemMatCARS The University of Chicago Lemont IL 60439 USA

4. Beijing National Laboratory for Condensed Matter Physics and Institute of Physics Chinese Academy of Sciences Beijing 100190 China

5. Department of Physics Massachusetts Institute of Technology Cambridge MA 02139 USA

6. Core Center of Excellence in Nano Imaging University of Southern California Los Angeles CA 90089 USA

7. Lawrence Berkeley National Laboratory Advanced Light Source Berkeley CA 94720 USA

8. Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA

9. Ming Hsieh Department of Electrical Engineering University of Southern California Los Angeles CA 90089 USA

Abstract

AbstractPolarimetric infrared (IR) detection bolsters IR thermography by leveraging the polarization of light. Optical anisotropy, i.e., birefringence and dichroism, can be leveraged to achieve polarimetric detection. Recently, giant optical anisotropy is discovered in quasi‐1D narrow‐bandgap hexagonal perovskite sulfides, A1+xTiS3, specifically BaTiS3 and Sr9/8TiS3. In these materials, the critical role of atomic‐scale structure modulations in the unconventional electrical, optical, and thermal properties raises the broader question of the nature of other materials that belong to this family. To address this issue, for the first time, high‐quality single crystals of a largely unexplored member of the A1+xTiX3 (X = S, Se) family, BaTiSe3 are synthesized. Single‐crystal X‐ray diffraction determined the room‐temperature structure with the P31c space group, which is a superstructure of the earlier reported P63/mmc structure. The crystal structure of BaTiSe3 features antiparallel c‐axis displacements similar to but of lower symmetry than BaTiS3, verified by the polarization dependent Raman spectroscopy. Fourier transform infrared (FTIR) spectroscopy is used to characterize the optical anisotropy of BaTiSe3, whose refractive index along the ordinary (Ec) and extraordinary (Ec) optical axes is quantitatively determined by combining ellipsometry studies with FTIR. With a giant birefringence Δn ∼ 0.9, BaTiSe3 emerges as a new candidate for miniaturized birefringent optics for mid‐wave infrared to long‐wave infrared imaging.

Funder

Army Research Office

National Science Foundation

Office of Naval Research

U.S. Department of Energy

Basic Energy Sciences

Gordon and Betty Moore Foundation

University of Southern California

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3