Efficient Quantum Dot Infrared Photovoltaic with Enhanced Charge Extraction via Applying Gradient Electron Transport Layers

Author:

Liu Sisi1,Deng Chengjie2,Wang Meng1,Wei Aoshen1,Luo Tianyu1,Lu Haifei1,Wen Xiaoyan1,Li Ming‐Yu13,Zhang Jianbing245ORCID

Affiliation:

1. School of Science Wuhan University of Technology Wuhan Hubei 430070 China

2. School of Integrated Circuits Wuhan National Laboratory for Optoelectronics (WNLO) Huazhong University of Science and Technology (HUST) Wuhan 430074 China

3. Yangtzi Delta Region Institute of University of Electronic Science and Technology of China Huzhou Zhejiang 313098 China

4. Wenzhou Advanced Manufacturing Technology Research Institute Huazhong University of Science and Technology Wenzhou 325035 China

5. Shenzhen Huazhong University of Science and Technology Research Institute Shenzhen 518057 China

Abstract

AbstractPbS quantum dot (QD) infrared (IR) solar cells that can absorb low‐energy photons are promising photovoltaic devices to improve utilization of sunlight energy by broadening absorption range of the sunlight spectrum to short‐wave infrared region. For PbS QD photovoltaics, depleted heterojunction established between photoactive layer and ZnO electron transport layer (ETL) is critical to determine the performance of devices. However, undesired defects in ZnO films and mismatched energy levels have limited the improvement of device properties. Herein, a novel and simple gradient ZnO ETL is developed for achieving high‐performance QD IR solar cells by depositing a Cs‐doped ZnO thin layer on the pristine ZnO film. The resulting gradient ETL exhibits significantly suppressive trap states and a much smoother surface, efficiently reducing the trap‐assisted nonradiative recombination at the interfaces. Meanwhile, realigned energy levels of the gradient ZnO ETL facilitate the transport and extraction of photogenerated carriers. As a result, the champion device shows a high IR open circuit voltage (VOC) of 0.446 V and IR power conversion efficiency (PCE) of 1.27% under 1100 nm filtered illumination. The VOC and PCE are 0.507 V and 11.04% under AM1.5 illumination, respectively. These results demonstrate a promising strategy for exploiting high‐performance infrared optoelectronic devices.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3