Broadband Ultrafast Nonlinear Optical Limiting at a Porphyrin‐Based 2D Polymer

Author:

Liu Fang1,Guan Zihao1,Wei Zhiyuan1,Fu Lulu1,Zhao Yang1,Chen Lu1,Shan Naying1,Huang Zhipeng1,Humphrey Mark G.2,Zhang Chi1ORCID

Affiliation:

1. China‐Australia Joint Research Center for Functional Molecular Materials School of Chemical Science and Engineering Tongji University Shanghai 200092 China

2. Research School of Chemistry Australian National University Canberra ACT 2601 Australia

Abstract

AbstractUltrafast lasers have significantly contributed to the advancement of research and technology; however, high‐intensity lasers bring potential risks to precision instruments and the human eye. Developing optical limiting (OL) devices capable of reasonably controlling laser energy to an acceptable energy level is imperative. Nevertheless, achieving both exceptional OL performance and broad‐spectrum laser intensity tunability proves highly challenging. In this work, the synthesis of a porphyrin‐based 2D polymer (Por‐2DP) using a template‐assisted self‐coupling polymerization, constructing a 2D framework through the carbon‐carbon single bond coupling of porphyrin monomer is presented. The resultant Por‐2DP demonstrates remarkable broadband nonlinear absorption performance, spanning the visible and near‐infrared spectral regions under an ultrafast pulse laser (35 fs) for the first time. OL thresholds at excitation wavelengths of 515, 800, and 1550 nm are determined to be 1.44, 0.48, and 0.54 mJ cm−2, respectively, surpassing reported 2D materials to date. Additionally, the Por‐2DP exhibits prominent photostability, enabling sustained operation under intense light conditions for a long time, thereby enhancing OL practical applicability. This study not only introduces a novel OL material and device but also promotes the application of innovative 2D organic polymers in NLO field.

Funder

National Natural Science Foundation of China

Australian Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3