Affiliation:
1. State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
2. Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou 350002 China
3. Resource Environment & Clean Energy Laboratory School of Chemistry and Chemical Engineering Jiangsu University of Technology Fuzhou 213001 China
Abstract
AbstractDiamond‐like (DL) metal chalcogenides have attracted significant attention in recent years because of their complex structural compositions and exceptional nonlinear optical (NLO) capabilities in the infrared (IR) range. Despite notable advancements in this field, there is still a lack of systematic research on high‐performance and simply composed IR‐NLO chalcogenides with DL structures. In this study, the insightful structural characteristics and IR‐NLO properties of a ternary Ag‐based chalcogenide Ag2GeS3 are investigated for the first time at both experimental and theoretical levels. The compound belongs to the non‐centrosymmetric Cmc21 space group (No.36) and displays a 3D DL structure comprising highly oriented [AgS4] and [GeS4] tetrahedra. Due to its distinct structure, the compound may produce significant second harmonic generation (SHG) response (5.6 × AgGaS2 at 2050 nm), the biggest value reported among Ag‐based IR‐NLO chalcogenides to date, and phase matchability in the IR range with a calculated birefringence of Δn = 0.09 at 2050 nm. According to theoretical calculations, the combined impacts of the distorted [AgS4] and [GeS4] NLO‐active motifs inside the 3D DL framework provide the SHG tensor d24 of Ag2GeS3 at 51.9 pm V−1 at 2050 nm. The prospective uses of Ag2GeS3 in the field of IR‐NLO are highlighted in this work.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Fujian Province
Youth Innovation Promotion Association of the Chinese Academy of Sciences