Dramatically Enhanced Light‐Emitting/Detecting Bifunction of CH3NH3PbBr3 Single‐Crystal Thin‐Film via Electrical Doping‐Induced Defects Passivation

Author:

Xing Jun123,Sun Yue12,Huang Xiaorui12,He Shengrong12,Huang Ziyuan3,Li Ying3,Li Wei3,Yu Weili3ORCID

Affiliation:

1. Xinjiang Key Laboratory of Solid State Physics and Devices Xinjiang University Urumqi 830017 China

2. School of Physics Science and Technology Xinjiang University Urumqi 830017 China

3. GPL Photonics Laboratory State Key Laboratory of Luminescence and Applications Changchun Institute of Optics Fine Mechanics and Physics Chinese Academy of Sciences Changchun 130033 China

Abstract

AbstractHigh‐performance light‐emitting/detecting bifunctional optoelectronic devices based on halide perovskites are hindered by the less efficient carrier transport and radiative recombination processes. The density of defects (i.e., surface and bulk defects) is the main factor affecting carrier transport, radiation recombination, and determining performance in perovskites. Therefore, techniques to effectively regulate defects are highly needed. Here, a convenient and effective strategy, electrical doping, is proposed to flexibly regulate defect density, resulting in dramatically enhanced light‐emitting (i.e., fluorescence and carrier lifetime) and light‐detecting performance (i.e., hole mobility, photo‐responsivity, and photo‐detectivity) simultaneously. An improved carrier transport model in CH3NH3PbBr3 (MPB) single‐crystal thin‐film (SCTF) is proposed to elucidate the regulation mechanism of defects and carrier transport under electrical doping. These results show that the surface defect density can be effectively reduced by 47.49% under optimal electrical poling intensity (0.168 V µm−1), and photoluminescence intensity and carrier lifetime can be increased by 259% and 89.98%, respectively. Furthermore, planar MPB SCTF photodetector exhibits hole mobility increased by 14.97%, photo‐responsivity increased by 82.78%, and photo‐detectivity increased by 868% at 0.168 V µm−1. Particularly, a record photo‐detectivity of 3.53 × 1013 Jones is achieved under electrical doping. This study provides guidance for flexibly adjusting defect density and optimizing perovskite SCTFs light‐emitting/detecting bifunctional devices.

Funder

Natural Science Foundation of Xinjiang Uygur Autonomous Region

National Natural Science Foundation of China

Natural Science Foundation of Jilin Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3