Ultrahigh Polarization of Emitted Light by Quenched Emissive Material

Author:

Choi Gyu Jin1,Swain Gayatri2,Jhun Chul Gyu3,Lee Seok Je3,Kim Jong Su1,Ha Jaedu1,Kim Youngsoo2ORCID,Gwag Jin Seog1

Affiliation:

1. Department of Physics Yeungnam University 280 Daehak‐Ro Gyeongsan 38541 Republic of Korea

2. Department of Chemistry Yeungnam University 280 Daehak‐Ro Gyeongsan 38541 Republic of Korea

3. Department of Digital Display Engineering Hoseo University Asan‐si Chungcheongnam‐do 31499 Republic of Korea

Abstract

AbstractThe emission of highly polarized light by organic light‐emitting diodes (OLEDs) is crucial for various applications; however, achieving such emission requires the use of polarizers, which reduce the device efficiency and durability. In this study, ultrahigh‐polarized light with a polarization ratio (PR) of 407:1 is achieved via the rapid thermal quenching (RTQ) of OLEDs. Poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) films, molybdenum disulfide (MoS2) nanosheets, and tungsten disulfide (WS2) nanosheets are applied as hole transport layers and surface‐alignment layers through surface treatment, including rubbing and/or ion‐beam exposure to align the molecules of the emissive materials, namely, {poly(9,9‐dioctylfluorene‐alt‐benzothiadiazole) (F8BT). Quenching is performed at 240 °C, at which F8BT has a nematic liquid crystal (NLC) phase with high molecular ordering. Upon quenching, the high molecular ordering of the NLC‐phased emissive layer instantaneously froze via RTQ, leading to the emission of highly polarized light. Consequently, the PEDOT:PSS‐, MoS2‐, and WS2‐based OLEDs exhibit ultrahigh PRs of 407:1, 349:1, and 328:1, respectively, for photoluminescence at a 540 nm peak wavelength. In contrast, for electroluminescence, the PEDOT:PSS‐based OLED exhibits a high PR of 395:1. This result is the best reported to date and is comparable to the PRs generated by polarizers, indicating that quenching can be utilized for the development of ultrahigh‐polarized light‐emitting devices.

Funder

National Research Foundation of Korea

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3