Sustainable Soft Electronics Combining Recyclable Metal Nanowire Circuits and Biodegradable Gel Film Substrates

Author:

Liu Yuxuan1ORCID,Ahmad Mesbah2ORCID,Venditti Richard A.3ORCID,Velev Orlin D.2ORCID,Zhu Yong1ORCID

Affiliation:

1. Department of Mechanical and Aerospace Engineering North Carolina State University Raleigh NC 27695 USA

2. Department of Chemical and Biomolecular Engineering North Carolina State University Raleigh NC 27695 USA

3. Department of Forest Biomaterials North Carolina State University Raleigh NC 27695 USA

Abstract

AbstractDirect disposal of used soft electronics into the environment can cause severe pollution to the ecosystem due to the inability of most inorganic materials and synthetic polymers to biodegrade. Additionally, the loss of the noble metals that are commonly used in soft electronics leads to a waste of scarce resources. Thus, there is an urgent need to develop “green” and sustainable soft electronics based on eco‐friendly manufacturing that may be recycled or biodegraded after the devices’ end of life. Here an approach to fabricating sustainable soft electronics is demonstrated where the expensive functional materials can be recycled and the soft substrate can be biodegradable. A stretchable agarose/glycerol gel film is used as the substrate, and silver nanowires (AgNWs) are printed on the film to fabricate the soft electronic circuits. The mechanical and chemical properties of the agarose/glycerol gel films are characterized, and the functionality of the printed AgNW electrodes for electrophysiological sensors is demonstrated. The demonstration of the biodegradability of the agarose/glycerol and the recyclability of AgNWs points toward ways to develop sustainable and eco‐friendly soft electronics.

Publisher

Wiley

Subject

Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3