Graphene Acetic Acid‐Based Hybrid Supercapacitor and Liquid‐Gated Transistor

Author:

Hensel Rafael C.12ORCID,Di Vizio Biagio1ORCID,Montes‐García Verónica3ORCID,Yang Jijin1,Ilie Georgian G.13ORCID,Sedona Francesco1ORCID,Sambi Mauro1ORCID,Samorì Paolo3ORCID,Cester Andrea4ORCID,Agnoli Stefano1ORCID,Casalini Stefano1ORCID

Affiliation:

1. Department of Chemical Sciences University of Padua Via Francesco Marzolo, 1 Padua 35131 Italy

2. São Carlos Institute of Physics University of São Paulo Av. Trab. São Carlense, 400 São Carlos 13566‐590 Brazil

3. CNRS ISIS UMR 7006 Université de Strasbourg 8 allée Gaspard Monge Strasbourg F‐67000 France

4. Department of Information Engineering University of Padua Via Giovanni Gradenigo, 6b Padua 35131 Italy

Abstract

AbstractSupercapacitors and transistors are two key devices for future electronics that must combine portability, high performance, easy scalability, etc. Graphene‐related materials (GRMs) are frequently chosen as active materials for these applications given their unique physical properties that are tunable via chemical functionalization. Up to date, among GRMs, only reduced graphene oxide (rGO) showed sufficient versatility and processability in mild media, rendering it suitable for integration in these two types of devices. Here, a sound alternative to rGO is provided, namely graphene acetic acid (GAA), whose physico‐chemical features offer specific advantages. In particular, the use of a GAA‐based cathode in a zinc hybrid supercapacitor (Zn‐HSC) delivers state‐of‐the‐art gravimetric capacitance of ≈400 F g−1 at a current density of 0.05 A g−1. Conversely, GAA‐based LGT, supported onto Si/SiO2, shows an ambipolar behavior in 0.1 m NaCl, featuring a clear p‐doping quantified by Dirac voltage higher than 100 mV. Such a device is successfully implemented in paper fluidics, thereby demonstrating the feasibility of real‐time monitoring.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

European Commission

Agence Nationale de la Recherche

Institut Universitaire de France

Publisher

Wiley

Subject

Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3