3D Stretchable Devices: Laser‐Patterned Electronic and Photonic Structures

Author:

Thekkekara Litty V12,Cheong Ying Zhi12,Rahman Md. Ataur1,Sriram Sharath12,Bhaskaran Madhu12ORCID

Affiliation:

1. Functional Materials and Microsystems Research Group RMIT University Melbourne Victoria 3001 Australia

2. ARC Center of Excellence for Transformative Meta‐Optical Systems RMIT University Melbourne Victoria 3001 Australia

Abstract

AbstractRealizing three‐dimensional stretchable structures of functional materials with a minimum footprint on Silicone polymer is highly desirable in soft robotics, stretchable electronics, and photonics. However, material processing on a stretchable substrate requires a sophisticated deposition system with integrated substrate cooling facilities, delamination of materials from the stretchable substrate due to stretching‐releasing cycles, and coating the functional materials. Here, a methodology to address these challenges using in situ graphitization within silicone polymer, referring to transforming the material into graphite‐like structures using three‐dimensional laser printing is reported. In this case, the graphitization process occurs due to the interaction of the material with a spatially controllable, tightly focused femtosecond laser beam in the confined region within the polymer. Three‐dimensional printed embedded, stretchable electrodes and varifocal lenses of thickness 1/20th compared to the epidermis layer thickness of human skin, which can contribute to achieving compact, highly sensitive wearable sensing and imaging systems are demonstrated and characterized. This process will open a new door for forming non‐metallic stretchable three‐dimensional conductors and photonics with minimum exposure to atmospheric conditions and a pathway to interface with thin films to develop low‐dimensional devices. These graphitized three‐dimensional structures can make them integral to intelligent skins, e‐textiles, and implantable devices.

Funder

Australian Research Council

Publisher

Wiley

Subject

Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3