Research Process of Carbon Dots in Memristors

Author:

Hao Haotian1ORCID,Yan Lingpeng12ORCID,Wang Mixue1,Cao Yanli1,He Jintao1,Yang Yongzhen1ORCID

Affiliation:

1. Key Laboratory of Interface Science and Engineering in Advanced Materials Ministry of Education Taiyuan University of Technology Taiyuan 030024 China

2. College of Materials Science and Engineering Taiyuan University of Technology Taiyuan 030024 China

Abstract

AbstractThe explosive growth of digital communication promotes advanced memory and computing devices in Big Data and artificial intelligence era. In particular, memristors hold great promise for in‐memory computing and artificial synapses, expected to break through restrictions on hardware computational power and storage capacity caused by the von Neumann bottleneck and declining Moore's Law. The memristance controllability is vital to memristors, in which functional layer materials are key. As novel functional layer materials, carbon dots (CDs) are expected to overtake silicon‐based materials due to their satisfactory modulation effects on memristance and distinguished memristive performances. The combination of CDs and matrix materials may carry out multimode sensation memristors for interactive intelligent systems. This review first gives a brief introduction to memristors and their functional layer materials, especially different CDs and their relations with memristance. Then the modulation effects of CDs on memristance are highlighted, mainly including the local electric field enhancement effect, the electron trapping and detrapping effect, and the photosensitization effect, accompanied by applications of CDs‐based memristors (CDMs). Lastly, challenges and perspectives of CDMs are pointed out. This work is rewarding to understand the role of CDs in memristors, to guide relevant research about CDMs, and to promote implementation for intelligent memory and computing.

Funder

National Natural Science Foundation of China

Shanxi Scholarship Council of China

Publisher

Wiley

Subject

Electronic, Optical and Magnetic Materials

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3