Affiliation:
1. National Key Laboratory of Wide Bandgap Semiconductor Devices and Integrated Technology, School of Microelectronics Xidian University Xi'an 710071 China
2. Department of Electrical and Computer Engineering King Abdulaziz University Jeddah 21589 Saudi Arabia
3. Guangzhou Wide Bandgap Semiconductor Innovation Center, Guangzhou Institute of Technology Xidian University Guangzhou 510555 China
Abstract
AbstractGallium oxide (Ga2O3) is an emerging ultra‐wide bandgap (UWBG) semiconductor material that has gained significant attention in the field of high voltage and high frequency power electronics. Its noteworthy attributes include a large bandgap (Eg) of 4.8 eV, high theoretical critical breakdown field strength (EC) of 8 MV cm−1, and saturation velocity (νs) of 2 × 107 cm s−1, as well as high Baliga figures of merit (BFOM) of 3000. In addition, Ga2O3 has the advantages of large‐size substrates that can be achieved by low‐cost melt‐grown techniques. This review provides a partial overview of pivotal milestones and recent advancements in the Ga2O3 material growth and device performance. It begins with a discussion of the fundamental material properties of Ga2O3, followed by a description of substrate growth and epitaxial techniques for Ga2O3. Subsequently, the contact technologies between Ga2O3 and other materials are fully elucidated. Moreover, this article also culminates with a detailed analysis of Ga2O3‐based high voltage and high frequency power devices. Some challenges and solutions, such as the lack of p‐type doping, low thermal conductivity, and low mobility are also presented and investigated in this review.
Funder
National Natural Science Foundation of China
Basic and Applied Basic Research Foundation of Guangdong Province
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献