2D MoTe2/MoS2−xOx Van der Waals Heterostructure for Bimodal Neuromorphic Optoelectronic Computing

Author:

Xiao Yang12,Li Wenbo2,Lin Xiankai2,Ji Yi2,Chen Zhilong1,Jiang Yanping1,Liu Qiuxiang1,Tang Xingui1,Liang Qijie2ORCID

Affiliation:

1. School of Physics & Optoelectric Engineering Guangdong University of Technology Guangzhou 510006 China

2. Songshan Lake Materials Laboratory Songshan Lake Mat Lab Dongguan 523808 China

Abstract

AbstractThe von Neumann bottleneck has long been a significant obstacle to the advancement of the era of intelligent computing. Neuromorphic devices are considered a promising solution to overcome this bottleneck. These devices draw inspiration from the information processing and computing capabilities of neurons in the human brain. Nevertheless, biomimetic synaptic devices used in neural network computing encounter significant challenges, including high nonlinearity in regulation, limited abundance of state conductance, and restrictions in unidirectional plasticity. Here, a memristor synaptic device is reported that utilizes the ion migration properties of MoTe2/MoS2−xOx heterojunction interface. This device demonstrates remarkable exceptional linearity, extensive dynamic regulation, and bidirectional independently controllable synaptic plasticity when subjected to bimodal regulation using electrical and optical signals. In addition, it shows significant paired‐pulse facilitation, empirical learning, and spike‐timing‐dependent properties. Furthermore, a deep learning framework is constructed to evaluate the reliability of devices in neuromorphic computation. The electronic synapses achieve high accuracy rates of 99.3% and 96.5% in recognizing digits and floral graphics, while photonic synapses achieve 95.3% and 91.5%. These findings emphasize the superior performance of photonic synapses in synaptic computation and provide a potential methodology for integrating multimodal neuromorphic hardware with artificial intelligence computing systems.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3