A novel nomogram and risk classification system based on inflammatory and immune indicators for predicting prognosis of pancreatic cancer patients with liver metastases

Author:

Peng Linjia12,Chen Hao12ORCID

Affiliation:

1. Department of Integrative Oncology Fudan University Shanghai Cancer Center Shanghai China

2. Department of Oncology, Shanghai Medical College Fudan University Shanghai China

Abstract

AbstractBackgroundThe study determined to construct a novel predictive nomogram to access the prognosis of pancreatic cancer patients with liver metastases (PCLM).MethodsMedical records included clinical and laboratory variables were collected. The patients were randomly divided into training and validation cohort. First, in the training cohort, the optimal cutoff value of SII, PNI, NLR, PLR were obtained. Then the survival analysis evaluated the effects of above indices on OS. Next, univariate and multivariate analyses were used to identify the independent factors of OS. Moreover, a nomogram was constructed based on LASSO cox analysis. Additionally, the predictive efficacy of the nomogram was evaluated by ROC curve and calibration curve in the training and validation cohort. Finally, a risk stratification system based on the nomogram was performed.ResultsA total of 472 PCLM patients were enrolled in the study. The optimal cutoff values of SII, PNI, PLR and NLR were 372, 43.6, 285.7143 and 1.48, respectively. By combing SII and PNI, named coSII‐PNI, we divided the patients into three groups. The Kaplan–Meier curves demonstrated above indices were correlated with OS. Univariate and multivariate analyses found the independent prognostic factors of OS. Through LASSO cox analysis, coSII‐PNI, PNI, NLR, CA199, CEA, chemotherapy and gender were used to construct the nomogram. Lastly, the ROC curve and calibration curve demonstrated that the nomogram can predict prognosis of PCLM patients. Significant differences were observed between high and low groups.ConclusionsThe nomogram based on immune, inflammation, nutritional status and other clinical factors can accurately predict OS of PCLM patients.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Cancer Research,Radiology, Nuclear Medicine and imaging,Oncology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3