C9orf142 transcriptionally activates MTBP to drive progression and resistance to CDK4/6 inhibitor in triple‐negative breast cancer

Author:

Liao Li123ORCID,Deng Ling1,Zhang Yin‐Ling2,Yang Shao‐Ying123,Andriani Lisa4,Hu Shu‐Yuan1,Zhang Fang‐Lin123,Shao Zhi‐Min12345,Li Da‐Qiang12345ORCID

Affiliation:

1. Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences Fudan University Shanghai China

2. Cancer Institute, Shanghai Medical College Fudan University Shanghai China

3. Department of Oncology, Shanghai Medical College Fudan University Shanghai China

4. Department of Breast Surgery, Fudan University Shanghai Cancer Center Fudan University Shanghai China

5. Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College Fudan University Shanghai China

Abstract

AbstractBackgroundTriple‐negative breast cancer (TNBC) presents the most challenging subtype of all breast cancers because of its aggressive clinical phenotypes and absence of viable therapy targets. In order to identify effective molecular targets for treating patients with TNBC, we conducted an integration analysis of our recently published TNBC dataset of quantitative proteomics and RNA‐Sequencing, and found the abnormal upregulation of chromosome 9 open reading frame 142 (C9orf142) in TNBC. However, the functional roles of C9orf142 in TNBC are unclear.MethodsIn vitro and in vivo functional experiments were performed to assess potential roles of C9orf142 in TNBC. Immunoblotting, real‐time quantitative polymerase chain reaction (RT‐qPCR), and immunofluorescent staining were used to investigate the expression levels of C9orf142 and its downstream molecules. The molecular mechanisms underlying C9orf142‐regulated mouse double minute 2 (MDM2)‐binding protein (MTBP) were determined by chromatin immunoprecipitation (ChIP) and dual‐luciferase reporter assays.ResultsIn TNBC tissues and metastatic lymph nodes, we observed that C9orf142 exhibited abnormal up‐regulation, and its elevated expression was indicative of unfavorable prognosis for TNBC patients. Both in vitro and in vivo functional experiments demonstrated that C9orf142 accelerated TNBC growth and metastasis. Further mechanism exploration revealed that C9orf142 transcriptionally activated MTBP, thereby regulating its downstream MDM2/p53/p21 signaling axis and the transition of cell cycle from G1 to S phase. Functional rescue experiment demonstrated that knockdown of MTBP attenuated C9orf142‐mediated tumour growth and metastasis. Furthermore, depletion of C9orf142 remarkably increased the responsiveness of TNBC cells to CDK4/6 inhibitor abemaciclib.ConclusionsTogether, these findings unveil a previously unrecognized effect of C9orf142 in TNBC progression and responsiveness to CDK4/6 inhibitor, and emphasize C9orf142 as a promising intervention target for TNBC treatment.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai Municipality

Publisher

Wiley

Subject

Molecular Medicine,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3