Establishment and characterization of a novel reverse genetic system of BK polyomavirus

Author:

Liu Nannan1,Gu Chenjian1,Yang Yang1,Gao Zixiang1,Kang Ning1,Liu Jing12,Xie Youhua13

Affiliation:

1. Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Diseases and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College Fudan University Shanghai China

2. Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Shanghai Medical College Fudan University Shanghai China

3. Department of Clinical Laboratory, Children's Hospital Fudan University Shanghai China

Abstract

AbstractBK polyomavirus (BKV) is a small non‐enveloped DNA virus. BKV infection or reactivation may cause BKV‐associated nephropathy and hemorrhagic cystitis in immunosuppressed transplant recipients. No effective antivirals or prevention strategies are available against BKV infections. The current BKV reverse system employs the transfection of purified full‐length linear viral genomes released by enzyme digestion from BKV genomic plasmids. The method is laborious and often results in variable DNA yield and quality, which can affect the efficiency of transfection and subsequent formation of circular viral genomes in cells. In this study, we report the generation of circular viral genomes by Cre‐mediated DNA recombination in cells directly transfected with BKV precursor genomic plasmids. The novel system supported efficient viral expression and replication, and produced a higher level of infectious virions compared with the transfection with linear BKV genomes. Furthermore, we successfully constructed recombinant BKV capable of reporter gene expression. In conclusion, the novel BKV reverse genetic system allows for simpler manipulation of BKV genome with better virus yield, providing a tool for the study of BKV life cycle and antiviral screening.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Infectious Diseases,Virology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3