Enantioselective Catalysis Based on Cationic Oxazaborolidines

Author:

Corey E. J.

Abstract

AbstractChiral oxazaborolidines can be activated by N‐protonation using strong protic acids or by N‐coordination with AlBr3 to form very strong chiral Lewis acids. The resulting chiral boron electrophiles (see structure) are powerful chiral catalysts that effectively promote [4+2], [3+2], and [2+2]‐cycloaddition reactions with high enantioselectivity.magnified imageOver the past several decades a revolution has occurred in chemistry that has essentially been unnoticed by those outside the field, even in other sciences. In brief, this includes the following: 1) our understanding of how chemical reactions occur, 2) our ability to invent new reactions, 3) our ability to utilize reactions that construct a vast assortment of useful or complicated molecules, and 4) our ability to apply chemical principles and knowledge to understand biological and medical problems. Within synthetic chemistry, a new science has been set in place beside the old, especially in terms of the control of absolute and relative stereochemistry and the creation of new types of useful catalysts that function in ways that were hitherto unimaginable. This Review deals with one aspect of such catalysis which has emerged only in the past six years: the generation and application of super‐Lewis acidic chiral oxazaborolidinium ions for enantioselective catalysis. Progress in this area has encompassed the formation of such catalysts, the detailed pathways of the reactions that they control and accelerate, the reactions that they can promote, and the ways in which they can be applied to advantage.

Publisher

Wiley

Cited by 256 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3