Finite element modeling of viscoelastic liquid crystal elastomers

Author:

Chehade Ali El Hajj1,Shen Beijun2,Yakacki Chris M.3,Nguyen Thao D.2,Govindjee Sanjay1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering University of California Berkeley California USA

2. Department of Mechanical Engineering Johns Hopkins University Baltimore Maryland USA

3. Department of Mechanical Engineering University of Colorado Denver Colorado USA

Abstract

AbstractLiquid crystal elastomers (LCEs) are elastomeric networks with anisotropic monomers that reorient in response to applied loads, and in particular, thermomechanical loads. LCE complex microstructures translate into complex behaviors, such as soft elasticity, rate‐dependency, and hysteresis. In this work, we develop a three‐dimensional finite element implementation for monodomain LCEs, with the material modeled as a finite deformation viscoelastic network with a viscous director. The formulation is designed so that the director field can be modeled as an internal variable. Unique to this class of materials is that their deformation response function depends on the full deformation gradient and not just the right‐stretch tensor. This results in the material tangent losing its ‘usual’ symmetry properties. Accordingly, this makes the use of a first Piola–Kirchhoff finite element formulation advantageous. We utilize this framework to examine a number of nuances associated with the simulation and design of LCE based systems. In particular, we investigate in some detail the importance of a careful characterization of an LCE's initial director field. Via simulations of separate tension and compression experiments, we highlight the possibility of incorrect predictions when even small perturbations to initial conditions occur. The simulations are also used to illustrate the goodness of the model in replicating simple and complex experimental results, including the first‐of‐their‐kind buckling‐like column compression and thick‐walled balloon inflation simulations.

Funder

Alexander von Humboldt-Stiftung

DEVCOM Army Research Laboratory

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3