Targeting extracellular vesicle delivery to the lungs by microgel encapsulation

Author:

Cober Nicholas D.12ORCID,Rowe Katelynn1,Deng Yupu1,Benavente‐Babace Ainara3,Courtman David W.1ORCID,Godin Michel3ORCID,Stewart Duncan J.12ORCID

Affiliation:

1. Sinclair Centre for Regenerative Medicine Ottawa Hospital Research Institute Ottawa Ontario Canada

2. Faculty of Medicine Department of Cellular and Molecular Medicine University of Ottawa Ottawa Ontario Canada

3. Faculty of Science, Department of Physics University of Ottawa Ottawa Ontario Canada

Abstract

AbstractExtracellular vesicles (EVs) secreted by stem and progenitor cells have significant potential as cell‐free ‘cellular’ therapeutics. Yet, small EVs (<200 nm) are rapidly cleared after systemic administration, mainly by the liver, presenting challenges targeting EVs to a specific organ or tissue. Microencapsulation using natural nano‐porous hydrogels (microgels) has been shown to enhance engraftment and increase the survival of transplanted cells. We sought to encapsulate EVs within microgels to target their delivery to the lung by virtue of their size‐based retention within the pulmonary microcirculation. Mesenchymal stromal cell (MSC) derived EVs were labelled with the lipophilic dye (DiR) and encapsulated within agarose‐gelatin microgels. Endothelial cells and bone marrow derived macrophages were able to take up EVs encapsulated in microgels in vitro, but less efficiently than the uptake of free EVs. Following intrajugular administration, microgel encapsulated EVs were selectively retained within the lungs for 72h, while free EVs were rapidly cleared by the liver. Furthermore, microgel‐loaded EVs demonstrated greater uptake by lung cells, in particular CD45+ immune cells, as assessed by flow cytometry compared to free EVs. Microencapsulation of EVs may be a novel tool for enhancing the targeted delivery of EVs for future therapeutic applications.

Funder

Canadian Institutes of Health Research

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3