Study on the Flow and Heat Transfer Performance of Microchannel Heat Exchangers With Different Elliptical Concave Cavities

Author:

Hou Tingbo1

Affiliation:

1. School of Aeronautical Engineering Taizhou University No. 1139, Shifu Avenue, Taizhou Zhejiang 318000 China

Abstract

AbstractEllipticity has a significant impact on the flow and heat transfer performance of microchannel heat exchangers (MHEs) with elliptical concave cavities. In this study, five types of MHEs with different elliptical concave cavities (ellipticities of 0.4, 0.6, 0.8, 1.0, and 1.2) were designed. The influence of ellipticity on the flow and heat transfer performance of MHEs was numerically investigated using ANSYS Fluent 21.0 R1. Moreover, MHEs with corresponding elliptical concave cavities structures were processed and manufactured, and then an experimental platform was designed and built for experimental verification. The results showed that the fluid velocity distribution in MHEs with elliptical concave cavities was symmetrical, and the formation of secondary flow in the elliptical concave cavities led to the continuous destruction and reconstruction of the flow and thermal boundary layer in the microchannel, which is conducive to mass and heat transfer in the MHEs with elliptical concave cavities. The inlet and outlet pressure drop of MHEs with elliptical concave cavities increased as the inlet flow rate increased. At the same inlet flow rate, the inlet and outlet pressure drop of the MHE with elliptical concave cavities first increased and then decreased with increasing ellipticity. At an ellipticity of 1.0, the inlet and outlet of MHE exhibited the lowest pressure drop indicating that the MHE with an ellipticity of 1.0 featured the highest pressure drop performance. The cold‐water outlet temperature of the MHEs with elliptical concave cavities first decreased and then increased as the inlet flow rate increased. At the same inlet flow rate, the cold‐water outlet temperature of the MHEs with elliptical concave cavities first increased and then decreased with increasing ellipticity, while the hot‐water outlet temperature of the MHEs first decreased and then increased with increasing flow rate. This indicated that the MHE with an ellipticity of 1.0 exhibited excellent heat transfer performance.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3