Affiliation:
1. North Carolina State University Department of Chemical and Biomolecular Engineering Partners Way Raleigh 27695 USA
2. University of South Carolina Department of Chemical Engineering 1409 Devine St Columbia 29208 USA
3. University of Houston Department of Chemical and Biomolecular Engineering 4226 Martin Luther King Boulevard Houston 77204 USA
Abstract
AbstractThis study examined essential factors in the use of hollow fiber membranes that affect CO2 removal efficiency. In the simulation, a finite element model for a membrane with ten fibers was used. Each fiber is 175 mm long with inner radius of 0.75 mm and outer radius of 1.5 mm. Liquid and gas flow rates were set at 100–800 mL min−1, and adsorbent concentration was adjusted in the range of 200–1500 mol m−3 for monoethanolamine, piperazine (PZ), and ethylenediamine absorbents. Increasing the liquid flow rate, gas flow rate, and absorbent concentration leads to an increase, decrease, and increase in efficiency, respectively. Thus, using PZ as absorbent with a concentration of 1080 mol m−3 liquid and gas flow rates of 400 and 180 mL min−1, respectively, showed a CO2 removal efficiency of > 95 % for a membrane effective length of 0.3 m.
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献