Dipstick Sensor Based on Molecularly Imprinted Polymer‐Coated Screen‐Printed Electrodes for the Single‐Shot Detection of Glucose in Urine Samples—From Fundamental Study toward Point‐of‐Care Application

Author:

Caldara Manlio1ORCID,Lowdon Joseph W.1ORCID,van Wissen Gil1ORCID,Ferrari Alejandro Garcia‐Miranda2ORCID,Crapnell Robert D.2ORCID,Cleij Thomas J.1,Diliën Hanne1ORCID,Banks Craig E.2ORCID,Eersels Kasper1ORCID,van Grinsven Bart1ORCID

Affiliation:

1. Sensor Engineering Department Faculty of Science and Engineering Maastricht University Maastricht 6200 MD the Netherlands

2. John Dalton Building Faculty of Science and Engineering Manchester Metropolitan University Chester Street Manchester M1 5GD UK

Abstract

AbstractGlucose biosensors play an extremely important role in health care systems worldwide. Therefore, the field continues to attract significant attention leading to the development of innovative technologies. Due to their characteristics, Molecularly Imprinted Polymers (MIPs) represent a promising alternative to commercial enzymatic sensors. In this work, a low‐cost, flexible MIP‐based platform for glucose sensing by integrating MIP particles directly into screen‐printed electrodes (SPEs) is realized. The sensor design allows the detection of glucose via two different transducer principles, the so‐called “heat‐transfer method” (HTM) and electrochemical impedance spectroscopy (EIS). The sensitivity and selectivity of the sensor are demonstrated by comparing the responses obtained toward three different saccharides. Furthermore, the application potential of the MIP‐SPE sensor is demonstrated by analyzing the response in urine samples, showing a linear range of 14.38–330 µm with HTM and 1.37–330 µm with EIS. To bring the sensor closer to a real life application, a handheld dipstick sensor is developed, allowing the single‐shot detection of glucose in urine using EIS. This study illustrates that the simplicity of the dipstick readout coupled with the straightforward manufacturing process opens up the possibility for mass production, making this platform a very attractive alternative to commercial glucose sensors.

Funder

Interreg

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3