Design of Phytic Acid Crosslinked Xerogels as Organic Photocatalysts for Visible Light‐Assisted Degradation of Dyes

Author:

Mir Aleena1,Aazam Elham S.2,Riaz Ufana13ORCID

Affiliation:

1. Materials Research Laboratory Department of Chemistry Jamia Millia Islamia New Delhi 110025 India

2. Chemistry Department Faculty of Science King Abdulaziz University Jeddah 23622 Saudi Arabia

3. Department of Chemistry and Biochemistry North Carolina Central University Durham NC 27707 USA

Abstract

AbstractExtensive research is being carried out on the degradation of water pollutants using various strategies to overcome the global water crisis. In the present study, xerogels as a better alternative is utilized to metal oxides for the photocatalytic degradation of toxic water pollutants such as dyes. Xerogels of polyaniline (PANI) and polypyrrole (PPy) are synthesized using phytic acid as a dopant as well as cross‐linker in the weight ratios of 1:1, 1:2, and 2:1 via simple chemical oxidative polymerization. The synthesized xerogels are analyzed for their spectral, morphological, thermal, and optical properties using FTIR, UV–vis, XRD, SEM, and TGA techniques. The xerogels are also tested for their photocatalytic activity against textile dyes – Methylene Blue (MB), Alizarin Red S, (ARS), Rhodamine B (RhB), and Methyl Orange (MO). Among all the composite xerogels, PANI/PPy‐2/1 showed excellent degradation efficiency of 91% for MB dye, 88% for RhB dye, 96% for ARS dye, and 92% for MO dye respectively. The composite PANI/PPy xerogels showed better degradation efficiency than their pristine counterparts. The fragments of the degraded dyes are examined using the LCMS technique and a tentative dye degradation mechanism is proposed.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3