Affiliation:
1. Department of Chemistry United Arab Emirates University Al‐Ain 15551 United Arab Emirates
2. Zayed Centre for Health Sciences United Arab Emirates University Al‐Ain 15551 United Arab Emirates
Abstract
AbstractHybrid organic‐inorganic nanoflowers (NFs) have recently emerged as a critical tool in enhancing the stability and activity of biomolecules due to their expansive surface area and porosity. The delicate petal‐like features of NFs offer innumerable sites for biomolecule adsorption, including but not limited to proteins, amino acids, and enzymes. Cu‐BTC, a copper‐based Metal‐Organic Framework (MOF) has been hindered in its potential for diverse applications by its instability in humid and aqueous conditions. To overcome this limitation, this study explores the stabilization of Cu‐BTC via the mineralization of its surface with the formation of copper phosphate nanoflowers (NFs). To initiate the mineralization process and provide a template for the growth of the NFs, a physiologically rich amino acid medium is employed. The inclusion of amino acids in the RPMI medium played a crucial role in the preservation of the Cu‐BTC hierarchical structure by facilitating the self‐assembly of copper phosphate nanoflowers on its surface, thereby producing a Cu‐BTC@Cu3(PO4)2 core‐shell structure. The innovative mechanism behind the formation of copper phosphate nanoflowers in this study and its consequential stabilization of the Cu‐BTC MOF structure underscore its novel nature.
Funder
United Arab Emirates University
Subject
Mechanical Engineering,Mechanics of Materials
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献