Biofouling and Corrosion Protection of Aluminum Alloys Through Ultrafast Laser Surface Texturing for Marine Applications

Author:

Cholkar Abhijit123ORCID,Chatterjee Suman12ORCID,Richards Chloe34,McCarthy Éanna12,Perumal Gopinath12,Regan Fiona34,Kinahan David123,Brabazon Dermot123

Affiliation:

1. I‐Form, Advanced Manufacturing Research Centre Dublin City University Glasnevin Dublin 9 Ireland

2. Advanced Processing Technology Research Centre School of Mechanical and Manufacturing Engineering Dublin City University Glasnevin Dublin 9 Ireland

3. DCU Water Institute Glasnevin Dublin 9 Ireland

4. School of Chemical Sciences Dublin City University Glasnevin Dublin 9 Ireland

Abstract

AbstractSurface biofouling, corrosion, and wettability are important parameters to understand and characterize aluminum alloys to prevent the failure in marine environments. Antifouling technologies predominantly encompass chemical and biocidal approaches with negative environmental consequences. Therefore, this study focuses on a new method of producing non‐toxic and effective antifouling and corrosion‐resistant surfaces. In this study, ultrafast laser texturing is used to modify the surface of an aluminum alloy using a femtosecond laser system. Five different unique texture patterns are designed and fabricated using 3 W laser power, 100 kHz pulse repetition rate, and 4 mm s−1 scanning speed in order to make the aluminum surface antifouling and corrosion resistant. The non‐textured sample has a contact angle of 85° while the textured samples have contact angles of up to 157°. The contact angle increased with time up to 90 days of aging. Biofouling assessment is conducted using marine algae Nitzschia ovalis as a marine fouling test organism. A reduction of biofilm coverage of 79% is recorded from the laser‐produced star pattern texture. This study demonstrates that laser‐textured surfaces have the potential to mitigate the formation of biofilms on the surfaces while also providing a mechanism to control the relative level of corrosion.

Funder

Science Foundation Ireland

Horizon 2020

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3