Affiliation:
1. Institute of Molecular Science (ICMol) University of Valencia Paterna 46980 Spain
2. School of Engineering and Materials Science Queen Mary University Mile End Road London E1 4NS England
3. Materials Science Institute University of Valencia Paterna 46980 Spain
Abstract
AbstractIn this work, ultrathin nickel films are developed for application as transparent electrodes in thermoelectric devices. The quality of the films is determined systematically by electrical, optical, and morphological characterization in a series of samples with different thickness. The thermal properties of the films show a dramatic dependence of the Seebeck coefficient on the film thickness. This dependence, with values ranging from −16 to +5 𝜇V K−1 for thicknesses from 10 to 2 nm, includes a change in the behavior of the thermoelectric response from n‐ to p‐type. It has also been demonstrated that the accurate estimation of the thermal conductivity in thin films is challenging due to substrate effects. In this situation, a differential measurement method based on scanning thermal microscopy is proposed, as in these conditions the measurements are less sensitive to the substrate effects. In further works, the dependence of the thermal properties of ultrathin nickel films can be exploited as a tuning parameter for the design of thermoelectric devices.
Funder
Conselleria de Cultura, Educación y Ciencia, Generalitat Valenciana
Spanish National Plan for Scientific and Technical Research and Innovation
HORIZON EUROPE European Research Council
Subject
Mechanical Engineering,Mechanics of Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献