Zinc Imidazole Framework‐8 Nanoparticles Disperse MRSA Biofilm by Inhibiting Arginine Biosynthesis and Down‐Regulating Adhesion‐Related Proteins

Author:

Tian Xinyuan12,Liu Bo12,Wu Haiyan12,Cai Runqiu12,Yang Yifei12,Zhou Chaoyu12,Zhao Zhongling12,Bai Qianyu12,Wang Yeru3,Liu Tianlong12ORCID

Affiliation:

1. Veterinary Pathology and Nanopathology Laboratory College of Veterinary Medicine China Agricultural University Beijing 100193 China

2. National Key Laboratory of Veterinary Public Health and Safety College of Veterinary Medicine China Agricultural University Beijing 100193 China

3. China National Center for Food Safety Risk Assessment Beijing 100022 China

Abstract

AbstractNanomaterials, including ZIF‐8 nanoparticles (NPs), are shown to be effective antimicrobial agents against Methicillin‐resistant Staphylococcus aureus(MRSA). However, the antibiofilm properties and mechanisms of ZIF‐8 NPs remain uncertain. In this study, ZIF‐8 NPs are prepared using the room temperature solution reaction method and characterized. Biofilm formation inhibition test and biofilm eradication test are performed and the results show that ZIF‐8 NPs can inhibit the formation of MRSA biofilm as well as disperse established MRSA biofilm. Proteomics and real‐time fluorescence quantitative polymerase chain reaction (PCR) are conducted to prove that ZIF‐8 NPs reduce the expression of adhesion‐related proteins, namely the fibronectin‐binding proteins A and B (fnbA/fnbB), fibrinogen binding protein caking factors A and B (clfA/clfB), elastin binding protein (ebps), and fibrin binding protein (eno). ZIF‐8 NPs also inhibit the arginine biosynthesis pathway by affecting the activities of argininosuccinate lyase, ornithine carbamyl transferase, Glutamate dehydrogenase, carbamate kinase, and arginine deiminase. A conclusion can be drawn from the above results that ZIF‐8 NPs can inhibit bacterial adhesion and kill bacteria directly, ultimately destroying MRSA biofilm. This study provides a molecular basis for the treatment of MRSA biofilm with ZIF‐8 NPs.

Funder

Natural Science Foundation of Beijing Municipality

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3