Affiliation:
1. Department of Chemistry Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
Abstract
AbstractUtilizing hot carriers induced by surface plasmon resonance in solar energy conversion to chemical fuels is a crucial issue in the field of photocatalysis. To achieve practical efficiency in plasmonic hot carrier application to photocatalysts, it is essential to theoretically and experimentally understand the generation, relaxation, and transfer of hot carriers. Photoelectrochemical (PEC) processes can offer a pathway to investigate the transfer dynamics of hot electrons (or hot holes) and enhance the efficiency of both hot carrier transfer and catalytic activity. This work summarizes a theoretical and experimental understanding of the hot carrier effect, emphasizing the hot carrier transfer dynamics to investigate the exact role of hot carriers in PEC reactions. The principles of hot carrier detection, diverse applications of hot carrier‐based photocatalysis, and perspectives for possible future progress are discussed.
Funder
Ministry of Trade, Industry and Energy
National Research Foundation of Korea