Intercalation Engineering of 2D Materials at Macroscale for Smart Human–Machine Interface and Double‐Layer to Faradaic Charge Storage for Ions Separation

Author:

Patil Rahul1,Dutta Saikat1ORCID

Affiliation:

1. Electrochemical Energy & Sensor Research Laboratory Amity Institute of Click Chemistry Research & Studies Amity University Noida 201303 India

Abstract

Abstract2D materials have attracted considerable attention in the past decade for their superlative physical properties. Lightweight foam from 2D materials can reduce the use of raw materials, save energy in processing the material and downregulate the carbon emission. Self‐assembling of graphene nanosheets results in 3D porous lightweight foam resembling hydrogels, aerogels, and xerogels. Hierarchical graphene architecture provides an uninterrupted path to electrons and phonon transport conforms to eligibility for developing sensor, energy storage, and energy conversion devices. Artificial intelligence (AI) originates from human–machine interaction and physiological signal reception which requires a large sensing range that illustrates to healthcare surveillance with wearable devices. Spongy architectures with flexibility and reversible compressibility act as a good candidate for pressure sensing for a wide range of real‐time human health monitoring systems by using artificial intelligence. In this review, the new perspective of emerging 2D materials (such as MXene, and borophene) along with the investigation of the graphene foam structure is demonstrated. Electrosorption of salt‐ions under foam electrode are reviewed in the context of electrochemical stability recycling ability, and efficiency of adsorption‐desorption. Beyond these, remaining challenges are depicted for emerging 2D‐materials of interest for health monitoring sensors and flexible supercapacitors for promising research directions.

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3