Densification of Doped Zinc Oxide Nanocrystal Films via Chemical Bath Infiltration

Author:

Wainer Pierce1,van Embden Joel1,Della Gaspera Enrico1ORCID

Affiliation:

1. School of Science RMIT University Melbourne VIC 3000 Australia

Abstract

AbstractColloidal nanocrystals (NCs) hold great promise for the fabrication of thin film devices due to the ability to precisely control their properties and deposit coatings via solution‐based protocols. The role of interfaces, surface defects, and (electrical) connectivity between NCs is a major bottleneck to achieving the desired performance. Here, a novel method to infiltrate and densify nanocrystalline coatings deposited from doped ZnO Ncs is presented. Reduced porosity, enhanced connectivity, and a reduction in surface defects are observed, culminating in vastly improved electrical conductivity. Doped ZnO NCs are processed into an ink and used for thin film deposition. Bulky native ligands are then removed from the film to promote better electrical contact between neighboring NCs and render their surfaces hydrophilic. Afterward, a modified chemical bath deposition (CBD) is adopted to slowly infill the pores between the NCs with pure ZnO via a controlled heterogeneous nucleation process. The optimized CBD avoids excessive surface growth and premature sealing of the film surface, confirmed by combined spectroscopic and morphological characterizations. The resultant hybrid films demonstrate enhanced electrical properties, with conductivity increasing by two orders of magnitude after pore infiltration. These results pave the way to hybrid functional coatings with enriched interparticle communication.

Funder

Australian Research Council

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PbSe Quantum Dot Superlattice Thin Films for Thermoelectric Applications;Advanced Functional Materials;2024-07-12

2. Nanomaterials: properties and characterization;Molecular Impacts of Nanoparticles on Plants and Algae;2024

3. Colloidal Approaches to Zinc Oxide Nanocrystals;Chemical Reviews;2022-12-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3