Investigating the Potential of Cuboidal Nanometals as Protein Subunit Vaccine Carriers In Vivo

Author:

Yavuz Emine12,Walters Adam A.1,Chudasama Bhavnesh V.1,Han Shunping1,Qin Yue1,Al‐Jamal Khuloud T.1ORCID

Affiliation:

1. Institute of Pharmaceutical Science Faculty of Life Sciences & Medicine King's College London Franklin‐Wilkins Building, 150 Stamford Street London SE1 9NH UK

2. Advanced Technology Research and Application Center Selcuk University Aleaddin Keykubat Yerleskesi, Akademi Mah. Yeni Istanbul Cad. No: 355/C, Selcuklu Konya 42130 Turkey

Abstract

AbstractMetal nanoparticles (NPs) are suggested as a vaccine delivery platform. At present, there is limited description of cuboidal Ag nanocubes (AgNCs; nonporous) and Au nanocages (AuNCs; porous) as a protein carrier for vaccination. Here, the intrinsic protein binding ability of AgNC and AuNC is first investigated, using ovalbumin (OVA) as a model antigen, to determine its suitability as a vaccine carrier. Next, the effect of AgNCs and AuNCs on bone‐marrow‐derived dendritic cells (BMDCs) is assessed in vitro. Finally, in vivo humoral and cellular immune responses of AgNC–OVA and AuNC–OVA following intramuscular immunization and their prophylactic effects in B16F10‐OVA mice tumor model are investigated. In terms of OVA loading efficiency, AgNCs are superior to AuNCs. Both nanomaterials are found not to induce BMDC maturation at subtoxic doses. After administration of nanovaccines, serum immunoglobulin G (IgG) responses are comparable between groups. However, there are slight alterations in relative frequencies of lymphocyte subpopulations, with AgNC–OVA‐immunized mice exhibiting lower memory T cells and reduced B cell and T follicular helper cell populations in spleen. Overall, AgNC–OVA and AuNC–OVA immunizations do not alter tumor growth. This study characterizes the intrinsic immunomodulatory properties of AgNCs and AuNCs, as protein subunit vaccine carriers.

Funder

British Council

Wellcome Trust

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3