Blue Transparent OLEDs with High Stability and Transmittance for Modulating Sleep Disorders

Author:

Chae Hyeonwook1ORCID,Park Yongjin1,Jo Yehhyun1ORCID,Jeon Yongmin2ORCID,Lee Hyunjoo Jenny1,Yoo Seunghyup1ORCID,Choi Kyung Cheol1ORCID

Affiliation:

1. School of Electrical Engineering KAIST Daejeon 34141 Republic of Korea

2. Department of Biomedical Engineering Gachon University Seongnam 13120 Republic of Korea

Abstract

AbstractOptoelectronics devices utilizing organic light‐emitting diodes (OLEDs) are emerging as new platforms for healthcare applications. In particular, wearable optoelectronics such as visual stimulus systems offer a distinctive advantage to intervene in and improve sleep disorders. In this study, two improvements are proposed for transparent OLEDs (TrOLEDs) that will be critical for visual applications. First, zinc sulfide with high surface energy and a high refractive index is explored as a seed and capping layer. An ultra‐thin silver cathode of 8 nm is demonstrated to be feasible in TrOLEDs, and luminous transmittance of 91% is achieved. Second, in general, achieving the operational stability of TrOLEDs with high transmittance is challenging due to the vulnerability of thin electrodes. By introducing a doping process to the electron transport layer, a lifetime comparable to that of control OLEDs with thick cathodes (>90%) is secured. Last, a preclinical model using blue light is proposed to modulate sleep patterns. Melanopsin is stimulated at the highest level of sleep desire, reducing non‐rapid eye movement sleep duration in mice by up to 14%. Based on these results, the proposed TrOLEDs are promising candidates for modulating sleep disorders such as insomnia and narcolepsy–cataplexy with the convenience of wearable form factors.

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3