Structured learning in time‐dependent Cox models

Author:

Wang Guanbo1ORCID,Lian Yi2,Yang Archer Y.34,Platt Robert W.5ORCID,Wang Rui67ORCID,Perreault Sylvie8,Dorais Marc9,Schnitzer Mireille E.810ORCID

Affiliation:

1. Department of Epidemiology Harvard T.H. Chan School of Public Health Boston Massachusetts USA

2. Department of Biostatistics, Epidemiology and Informatics University of Pennsylvania Philadelphia Pennsylvania USA

3. Department of Mathematics and Statistics McGill University Montreal Quebec Canada

4. Mila Québec AI Institute Montreal Quebec Canada

5. Department of Epidemiology, Biostatistics and Occupational Health McGill University Montreal Quebec Canada

6. Department of Population Medicine Harvard Pilgrim Health Care Institute and Harvard Medical School Boston Massachusetts USA

7. Department of Biostatistics Harvard T.H. Chan School of Public Health Boston Massachusetts USA

8. Faculté de Pharmacie Université de Montréal Montreal Quebec Canada

9. StatSciences Inc. Notre‐Dame‐de‐l'Île‐Perrot Quebec Canada

10. Département de Médecine Sociale et Préventive Université de Montréal Montreal Quebec Canada

Abstract

Cox models with time‐dependent coefficients and covariates are widely used in survival analysis. In high‐dimensional settings, sparse regularization techniques are employed for variable selection, but existing methods for time‐dependent Cox models lack flexibility in enforcing specific sparsity patterns (ie, covariate structures). We propose a flexible framework for variable selection in time‐dependent Cox models, accommodating complex selection rules. Our method can adapt to arbitrary grouping structures, including interaction selection, temporal, spatial, tree, and directed acyclic graph structures. It achieves accurate estimation with low false alarm rates. We develop the sox package, implementing a network flow algorithm for efficiently solving models with complex covariate structures. sox offers a user‐friendly interface for specifying grouping structures and delivers fast computation. Through examples, including a case study on identifying predictors of time to all‐cause death in atrial fibrillation patients, we demonstrate the practical application of our method with specific selection rules.

Funder

FRQNT

Natural Sciences and Engineering Research Council of Canada

Heart and Stroke Foundation of Canada

Canadian Institutes of Health Research

Fonds de Recherche du Québec - Santé

Réseau Québécois de Recherche sur les Médicaments

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3