Affiliation:
1. Department of Otolaryngology‐Head and Neck Surgery, Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
2. Ear Institute Shanghai Jiao Tong University School of Medicine Shanghai China
3. Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300) Shanghai China
4. Materdicine Lab, School of Life Sciences Shanghai University Shanghai China
Abstract
AbstractThe therapeutic effects of pharmaceuticals depend on their drug concentrations in the cochlea. Efficient drug delivery from the systemic circulation into the inner ear is limited by the blood‐labyrinth‐barrier (BLB). This study investigated a novel noninvasive sound conditioning (SC) strategy (90 dB SPL, 8–16 kHz, 2 h sound exposure) to temporally enhance BLB permeability in a controllable way, contributing to maximizing the penetration of pharmaceuticals from blood circulation into the cochlea. Trafficking of Fluorescein Isothiocyanate conjugated dextran and bovine serum albumin (FITC‐dextran and FITC‐BSA) demonstrated that paracellular leakage of BLB sustained for 6 h after SC, providing a controllable time window for systemic administration. Cochlear concentrations of dexamethasone (DEX) and dexamethasone phosphate (DEX‐P), respectively transported by transcellular and paracellular pathways, showed a higher content of the latter one after SC, further confirming the key role of paracellular pathway in the SC‐induced hyperpermeability. Results of high‐throughput RNA‐sequencing identified a series of tight junction (TJ)‐associated genes after SC. The expressions of TJ (ZO‐1) were reduced and irregular rearrangements of the junction were observed by transmission electron microscopy after SC. We further determined the inhibiting role of Rab13 in the recruitment of ZO‐1 and later in the regulation of cellular permeability. Meanwhile, no significant change in the quantifications of endothelial caveolae vesicles after SC indicated that cellular transcytosis accounted little for the temporary hyperpermeability after SC. Based on these results, SC enhances the BLB permeability within 6 h and allows systemically applied drugs which tend to be transported by paracellular pathway to readily enter the inner ear, contributing to guiding the clinical medications on hearing loss.
Funder
National Natural Science Foundation of China
Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases
Subject
Pharmaceutical Science,Biomedical Engineering,Biotechnology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献