Enhancing viability and angiogenic efficacy of mesenchymal stem cells via HSP90α and HSP27 regulation based on ROS stimulation for wound healing

Author:

Seo Inwoo1,Kim Sung‐Won1,Hyun Jiyu1,Kim Yu‐Jin1,Park Hyun Su1,Yoon Jeong‐Kee2,Bhang Suk Ho1ORCID

Affiliation:

1. School of Chemical Engineering, Sungkyunkwan University Suwon Republic of Korea

2. Department of Systems Biotechnology Chung‐Ang University Anseong Republic of Korea

Abstract

AbstractLight‐based therapy has been reported as a potential preconditioning strategy to induce intracellular reactive oxygen species (ROS) signaling and improve the angiogenic properties of various types of cells. However, bio‐stimulation mechanisms of light therapy in terms of ROS‐heat shock proteins (HSPs) mediated anti‐apoptotic and angiogenic pathways in human adult stem cells have not been fully delineated yet. Commonly used light sources such as light‐emitting diode (LED) and laser are accompanied by drawbacks, such as phototoxicity, thermal damage, and excessive ROS induction, so the role and clinical implications of light‐induced HSPs need to be investigated using a heat‐independent light source. Here, we introduced organic LED (OLED) at 610 nm wavelength as a new light source to prevent thermal effects from interfering with the expression of HSPs. Our results showed that light therapy using OLED significantly upregulated anti‐apoptotic and angiogenic factors in human bone marrow mesenchymal stem cells (hMSCs) at both gene and protein levels via the activation of HSP90α and HSP27, which were stimulated by ROS. In a mouse wound‐closing model, rapid recovery and improved re‐epithelization were observed in the light‐treated hMSCs transplant group. This study demonstrates that the upregulation of Akt (protein kinase B)‐nuclear factor kappa‐light‐chain‐enhancer of activated B cells (NF‐κB) signaling, caused by HSP90α and HSP27 expression, is the mechanism behind the anti‐apoptotic and angiogenic effects of OLED treatment on stem cells.

Funder

Ministry of Science and ICT, South Korea

National Research Foundation of Korea

Publisher

Wiley

Subject

Pharmaceutical Science,Biomedical Engineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3