Engineering T cell receptor fusion proteins using nonviral CRISPR/Cas9 genome editing for cancer immunotherapy

Author:

Shu Runzhe12ORCID,Hammett Maree12,Evtimov Vera12,Pupovac Aleta12,Nguyen Nhu‐Y12,Islam Rasa12,Zhuang Junli12,Lee Seyeong3,Kang Tae‐hun3,Lee Kyujun3,Nisbet Ian12,Hudson Peter12ORCID,Lee Jae Young3,Boyd Richard12,Trounson Alan124

Affiliation:

1. Cartherics Pty Ltd. Notting Hill Australia

2. Australian Regenerative Medicine Institute Monash University Clayton Australia

3. ToolGen Inc. Seoul South Korea

4. Department of Obstetrics and Gynaecology Monash University Clayton Australia

Abstract

AbstractManufacture of chimeric antigen receptor (CAR)‐T cells usually involves the use of viral delivery systems to achieve high transgene expression. However, it can be costly and may result in random integration of the CAR into the genome, creating several disadvantages including variation in transgene expression, functional gene silencing and potential oncogenic transformation. Here, we optimized the method of nonviral, CRISPR/Cas9 genome editing using large donor DNA delivery, knocked‐in an anti‐tumor single chain variable fragment (scFv) into the N‐terminus of CD3ε and efficiently generated fusion protein (FP) T cells. These cells displayed FP integration within the TCR/CD3 complex, lower variability in gene expression compared to CAR‐T cells and good cell expansion after transfection. CD3ε FP T cells were predominantly CD8+ effector memory T cells, and exhibited anti‐tumor activity in vitro and in vivo. Dual targeting FP T cells were also generated through the incorporation of scFvs into other CD3 subunits and CD28. Compared to viral‐based methods, this method serves as an alternative and versatile way of generating T cells with tumor‐targeting receptors for cancer immunotherapy.

Publisher

Wiley

Subject

Pharmaceutical Science,Biomedical Engineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3