Multiscale equatorial electrojet turbulence: Energy conservation, coupling, and cascades in a baseline 2‐D fluid model

Author:

Hassan Ehab12ORCID,Hatch D. R.3,Morrison P. J.3,Horton W.34

Affiliation:

1. ICES University of Texas at Austin Austin Texas USA

2. Department of Physics Ain Shams University Cairo Egypt

3. IFS University of Texas at Austin Austin Texas USA

4. ARL University of Texas at Austin Austin Texas USA

Abstract

AbstractProgress in understanding the coupling between plasma instabilities in the equatorial electrojet based on a unified fluid model is reported. Simulations with parameters set to various ionospheric background conditions revealed properties of the gradient‐drift and Farley‐Buneman instabilities. Notably, sharper density gradients increase linear growth rates at all scales, whereas variations in cross‐field E × B drift velocity only affect small‐scale instabilities. A formalism defining turbulent fluctuation energy for the system is introduced, and the turbulence is analyzed within this framework. This exercise serves as a useful verification test of the numerical simulations and also elucidates the physics underlying the ionospheric turbulence. Various physical mechanisms involved in the energetics are categorized as sources, sinks, nonlinear transfer, and cross‐field coupling. The physics of the nonlinear transfer terms is studied to identify their roles in producing energy cascades, which explain the generation of small‐scale structures that are stable in the linear regime. The theory of two‐step energy cascading to generate the 3 m plasma irregularities in the equatorial electrojet is verified for the first time in the fluid regime. In addition, the nonlinearity of the system allows the possibility of an inverse energy cascade, potentially responsible for generating large‐scale plasma structures at the top of the electrojet as found in different rocket and radar observations.

Funder

U.S. Department of Energy

Publisher

American Geophysical Union (AGU)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3