Mechanism of action and therapeutic potential of dimethyl fumarate in ischemic stroke

Author:

Owjfard Maryam12,Karimi Farzaneh3,Mallahzadeh Arashk1,Nabavizadeh Seyed Ali1ORCID,Namavar Mohammad Reza45ORCID,Saadi Mahdiyar Iravani6,Hooshmandi Etrat1,Salehi Mohammad Saied1,Zafarmand Seyedeh Shaghayegh1,Bayat Mahnaz1,Karimlou Sedigheh1,Borhani‐Haghighi Afshin1ORCID

Affiliation:

1. Clinical Neurology Research Center Shiraz University of Medical Sciences Shiraz Iran

2. Shiraz University of Applied Science and Technology (UAST) Shiraz Iran

3. Behbahan Faculty of Medical Science Behbahan Iran

4. Histomorphometry and Stereology Research Center Shiraz University of Medical Sciences Shiraz Iran

5. Department of Anatomical Sciences, School of Medicine Shiraz University of Medical Sciences Shiraz Iran

6. Hematology Research Center Shiraz University of Medical Sciences Shiraz Iran

Abstract

AbstractDimethyl fumarate (DMF) is an immunomodulatory drug currently approved for the treatment of multiple sclerosis and psoriasis. Its benefits on ischemic stroke outcomes have recently come to attention. To date, only tissue plasminogen activators (tPAs) and clot retrieval methods have been approved by the FDA for the treatment of ischemic stroke. Ischemic conditions lead to inflammation through diverse mechanisms, and recanalization can worsen the state. DMF and the nuclear factor erythroid‐derived 2‐related factor 2 (Nrf2) pathway it regulates seem to be important in postischemic inflammation, and animal studies have demonstrated that the drug improves overall stroke outcomes. Although the exact mechanism is still unknown, studies indicate that these beneficial impacts are due to the modulation of immune responses, blood–brain barrier permeability, and hemodynamic adjustments. One major component evaluated before, during, and after tPA therapy in stroke patients is blood pressure (BP). Recent studies have found that DMF may impact BP. Both hypotension and hypertension need correction before treatment, which may delay the appropriate intervention. Since BP management is crucial in managing stroke patients, it is important to consider DMF's role in this matter. That being said, it seems further investigations on DMF may lead to an alternative approach for stroke patients. In this article, we discuss the mechanistic roles of DMF and its potential role in stroke based on previously published literature and laboratory findings.

Publisher

Wiley

Subject

Cellular and Molecular Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3