Bisphosphonates attenuate age‐related muscle decline in Caenorhabditis elegans

Author:

Slade Luke12ORCID,Bollen Shelby E.3,Bass Joseph J.3,Phillips Bethan E.3,Smith Kenneth3,Wilkinson Daniel J.3,Szewczyk Nathaniel J.4,Atherton Philip J.3,Etheridge Timothy2

Affiliation:

1. University of Exeter Medical School Exeter UK

2. Faculty of Health and Life Sciences University of Exeter Exeter UK

3. Centre of Metabolism, Ageing & Physiology (COMAP), MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research (CMAR), Unit of Injury, Recovery and Inflammation Sciences (IRIS), School of Medicine University of Nottingham Derby UK

4. Ohio Musculoskeletal and Neurological Institute Heritage College of Osteopathic Medicine Athens OH USA

Abstract

AbstractBackgroundAge‐related muscle decline (sarcopenia) associates with numerous health risk factors and poor quality of life. Drugs that counter sarcopenia without harmful side effects are lacking, and repurposing existing pharmaceuticals could expedite realistic clinical options. Recent studies suggest bisphosphonates promote muscle health; however, the efficacy of bisphosphonates as an anti‐sarcopenic therapy is currently unclear.MethodsUsing Caenorhabditis elegans as a sarcopenia model, we treated animals with 100 nM, 1, 10, 100 and 500 μM zoledronic acid (ZA) and assessed lifespan and healthspan (movement rates) using a microfluidic chip device. The effects of ZA on sarcopenia were examined using GFP‐tagged myofibres or mitochondria at days 0, 4 and 6 post‐adulthood. Mechanisms of ZA‐mediated healthspan extension were determined using combined ZA and targeted RNAi gene knockdown across the life‐course.ResultsWe found 100 nM and 1 μM ZA increased lifespan (P < 0.001) and healthspan [954 ± 53 (100 nM) and 963 ± 48 (1 μM) vs. 834 ± 59% (untreated) population activity AUC, P < 0.05]. 10 μM ZA shortened lifespan (P < 0.0001) but not healthspan (758.9 ± 37 vs. 834 ± 59, P > 0.05), whereas 100 and 500 μM ZA were larval lethal. ZA (1 μM) significantly improved myofibrillar structure on days 4 and 6 post‐adulthood (83 and 71% well‐organized myofibres, respectively, vs. 56 and 34% controls, P < 0.0001) and increased well‐networked mitochondria at day 6 (47 vs. 16% in controls, P < 0.01). Genes required for ZA‐mediated healthspan extension included fdps‐1/FDPS‐1 (278 ± 9 vs. 894 ± 17% population activity AUC in knockdown + 1 μM ZA vs. untreated controls, respectively, P < 0.0001), daf‐16/FOXO (680 ± 16 vs. 894 ± 17%, P < 0.01) and agxt‐2/BAIBA (531 ± 23 vs. 552 ± 8%, P > 0.05). Life/healthspan was extended through knockdown of igdb‐1/FNDC5 (635 ± 10 vs. 523 ± 10% population activity AUC in gene knockdown vs. untreated controls, P < 0.01) and sir‐2.3/SIRT‐4 (586 ± 10 vs. 523 ± 10%, P < 0.05), with no synergistic improvements in ZA co‐treatment vs. knockdown alone [651 ± 12 vs. 635 ± 10% (igdb‐1/FNDC5) and 583 ± 9 vs. 586 ± 10% (sir‐2.3/SIRT‐4), both P > 0.05]. Conversely, let‐756/FGF21 and sir‐2.2/SIRT‐4 were dispensable for ZA‐induced healthspan [630 ± 6 vs. 523 ± 10% population activity AUC in knockdown + 1 μM ZA vs. untreated controls, P < 0.01 (let‐756/FGF21) and 568 ± 9 vs. 523 ± 10%, P < 0.05 (sir‐2.2/SIRT‐4)].ConclusionsDespite lacking an endoskeleton, ZA delays Caenorhabditis elegans sarcopenia, which translates to improved neuromuscular function across the life course. Bisphosphonates might, therefore, be an immediately exploitable anti‐sarcopenia therapy.

Funder

United Mitochondrial Disease Foundation

Medical Research Council

National Aeronautics and Space Administration

Publisher

Wiley

Subject

Physiology (medical),Orthopedics and Sports Medicine

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3