A novel hybrid observer‐based model‐free adaptive high‐order terminal sliding mode control for robot manipulators with prescribed performance

Author:

Zha Minxuan1,Wang Haoping1ORCID,Tian Yang1,He Dingxin1ORCID,Wei Yangchun1

Affiliation:

1. International Joint Laboratory of Automatic Control and Signal Processing, School of Automation Nanjing University of Science and Technology Nanjing China

Abstract

AbstractAlthough widely used in industrial applications, strong nonlinearity and coupling, high computational complexity prevent high precision tracking control of manipulator. In this paper, to overcome the rely on system model and achieve prescribed convergence, a novel hybrid observer‐based model‐free adaptive high‐order fast terminal sliding model control scheme (HO‐MHTSMC) with prescribed performance is proposed for trajectory tracking control of robot manipulators in the existence of friction and external disturbance. The ultra‐local model is used to approximate the original complex system in a model free form in a short sliding time window, which avoid the accurate modeling of the manipulator system. To compensate for the lumped uncertainties, a hybrid observer based on adaptive time‐delay estimation and adaptive second order sliding mode observer (SOSM) is proposed to achieve finite‐time observation and zero estimation error. Besides, a transformation using prescribed performance function is applied to the system to ensure the transient and steady‐state performance of the trajectory tracking in joint space. Furthermore, a high‐order fast terminal sliding mode control algorithm with backstepping control strategy is used to stabilize the whole system and reduce the chattering problem in conventional sliding mode control. The stability analysis of the system is provided by Lyapunov theorem. Finally, numerical study and co‐simulations show that the proposed control scheme has better performance in tracking accuracy and robustness compared with conventional control schemes.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3