A direct reinitialization approach of level‐set/splitting finite element method for simulating incompressible two‐phase flows

Author:

Cho Myung H.,Choi Hyoung G.,Yoo Jung Y.

Abstract

AbstractComputation of a moving interface by the level‐set (LS) method typically requires reinitialization of LS function. An inaccurate execution of reinitialization results in incorrect free surface capturing and thus errors such as mass gain/loss so that an accurate and robust reinitialization process in the LS method is essential for the simulation of free surface flows. In the present study, we pursue further development of the reinitialization process, which directly corrects the LS function after advection is carried out by using the normal vector to the interface instead of solving the reinitialization equation of hyperbolic type. The Taylor–Galerkin method is adopted to discretize the advection equation of the LS function and the P1P1 splitting finite element method is applied to solve the Navier–Stokes equation. The proposed algorithm is validated with the well‐known benchmark problems, i.e. stretching of a circular fluid element, time‐reversed single‐vortex, solitary wave propagation, broken dam flow and filling of a container. The simulation results of these flows are in good agreement with previously existing experimental and numerical results. Copyright © 2010 John Wiley & Sons, Ltd.

Publisher

Wiley

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A novel phase-field/immersed-boundary algorithm for two-phase fluid–structure interaction simulation;Physics of Fluids;2025-05-01

2. A Narrow Band Finite Element Method for the Level Set Equation;SIAM Journal on Scientific Computing;2025-03-12

3. Marangoni motion of a multi-core compound droplet on a substrate;International Journal of Heat and Fluid Flow;2024-10

4. Modeling Multi‐Material Structural Patterns in Tectonic Flow With a Discontinuous Galerkin Level Set Method;Journal of Geophysical Research: Solid Earth;2023-11

5. Impact of Two Successive Compound Droplets Undergoing Thermal Convection;Iranian Journal of Science and Technology, Transactions of Mechanical Engineering;2023-06-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3