Seismic analysis of a modern 14‐story reinforced concrete core wall building system using the BTM‐shell methodology

Author:

Mavros Marios1ORCID,Panagiotou Marios2,Koutromanos Ioannis3ORCID,Alvarez Rodolfo4,Restrepo Jose I.5

Affiliation:

1. Department of Civil and Environmental Engineering University of Cyprus Nicosia Cyprus

2. Nabih Youssef Structural Engineers Los Angeles California USA

3. Department of Civil and Environmental Engineering Virginia Polytechnic Institute and State University Blacksburg Virginia USA

4. MM Engineers SC Mexicali, Baja California México

5. Department of Structural Engineering University of California San Diego La Jolla California USA

Abstract

AbstractThis paper uses computational simulation to investigate the lateral load‐displacement behavior and failure modes of a modern 14‐story reinforced concrete (RC) core wall building. The design complies with the minimum code requirements of the current California Building Code, which is based on ASCE 7–16 and ACI 318–14. The computational representation of the building, which accounts for the material nonlinearities of all structural components, employs the beam‐truss model (BTM) for the walls and floor slabs. Analyses of the building model are conducted for static monotonic and cyclic lateral loads using the program FE‐MultiPhys, which provides a user‐friendly implementation of the BTM as an assemblage of rectangular shell macroelements. Two different load patterns, that is, lateral load distributions along the building height, are considered. The analyses provide insights into the evolution of damage and lateral strength degradation and their dependence on the load pattern, while also elucidating the complex interaction between the webs and flanges of the core wall and the system effects associated with coupling between the walls, beams, slabs, and columns. The presentation of the analytical results is accompanied by a discussion on the advantages of the BTM over seismic analysis methods used in current code‐minimum and performance‐based seismic design (PBSD) practice.

Publisher

Wiley

Reference50 articles.

1. Minimum Design Loads and Associated Criteria for Buildings and Other Structures

2. WallaceJW SeguraCL TranTA Shear design of structural walls.Proceedings Los Angeles Tall Buildings Structural Design Council;2013.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3