Adaptive neural network‐based security asynchronous control for uncertain Markov jump power systems with dead zone under DoS attack

Author:

Dong Shanling1,Liu Enjun1ORCID,Wang Bo2ORCID,Liu Meiqin13,Chen Guanrong4

Affiliation:

1. College of Electrical Engineering Zhejiang University Hangzhou People's Republic of China

2. Systems Engineering Research Institute China State Shipbuilding Corporation (CSSC) Beijing People's Republic of China

3. National Key Laboratory of Human‐Machine Hybrid Augmented Intelligence Xi'an Jiaotong University Xi'an People's Republic of China

4. Department of Electrical Engineering City University of Hong Kong Hong Kong SAR People's Republic of China

Abstract

AbstractThe article deals with the security control stabilization problem of uncertain Markov jump power systems with input dead zone under stochastic denial‐of‐service (DoS) attack. DoS attack is modeled as a discrete‐time Markov process. Dual hidden Markov models are respectively used to detect the modes of the original power systems and the one under DoS attack. Based on the detected modes and neural networks (NNs), adaptive NN‐based security asynchronous control strategies are proposed, where both state feedback and output feedback are studied simultaneously. With the developed control laws, all trajectories of the closed‐loop systems are bounded stable in the stochastic setting. Simulation results demonstrate the correctness and usefulness of the proposed techniques.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3