CCNB1IP1 prevents ubiquitination‐mediated destabilization of MYCN and potentiates tumourigenesis of MYCN‐amplificated neuroblastoma

Author:

Zhou Yang12ORCID,Yan Hui12,Zhou Qiang13,Wang Penggao12,Yang Fang12,Yuan Ziqiao4,Du Qianming56,Zhai Bo12

Affiliation:

1. Henan Provincial Clinical Research Center for Pediatric Diseases, Henan Key Laboratory of Pediatric Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital Zhengzhou Children's Hospital Zhengzhou China

2. Department of Cardiothoracic Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital Zhengzhou Children's Hospital Zhengzhou China

3. Department of Pathology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital Zhengzhou Children's Hospital Zhengzhou China

4. School of Pharmaceutical Sciences Zhengzhou University Zhengzhou China

5. General Clinical Research Center Nanjing First Hospital Nanjing Medical University Nanjing P. R. China

6. School of Basic Medicine & Clinical Pharmacy China Pharmaceutical University Nanjing P. R. China

Abstract

AbstractBackgroundMYCN amplification as a common genetic alteration that correlates with a poor prognosis for neuroblastoma (NB) patients. However, given the challenge of directly targeting MYCN, indirect strategies to modulate MYCN by interfering with its cofactors are attractive in NB treatment. Although cyclin B1 interacting protein 1 (CCNB1IP1) has been found to be upregulated in MYCN‐driven mouse NB tissues, its regulation with MYCN and collaboration in driving the biological behaviour of NB remains unknown.MethodsTo evaluate the expression and clinical significance of CCNB1IP1 in NB patients, public datasets, clinical NB samples and cell lines were explored. MTT, EdU incorporation, colony and tumour sphere formation assays, and a mouse xenograft tumour model were utilized to examine the biological function of CCNB1IP1. The reciprocal manipulation of CCNB1IP1 and MYCN and the underlying mechanisms involved were investigated by gain‐ and loss‐of‐function approaches, dual‐luciferase assay, chromatin immunoprecipitation (CHIP) and co‐immunoprecipitation (Co‐IP) experiments.ResultsCCNB1IP1 was upregulated in MYCN‐amplified (MYCN‐AM) NB cell lines and patients‐derived tumour tissues, which was associated with poor prognosis. Phenotypic studies revealed that CCNB1IP1 facilitated the proliferation and tumourigenicity of NB cells in cooperation with MYCN in vitro and in vivo. Mechanistically, MYCN directly mediates the transcription of CCNB1IP1, which in turn attenuated the ubiquitination and degradation of MYCN protein, thus enhancing CCNB1IP1‐MYCN cooperativity. Moreover, CCNB1IP1 competed with F box/WD‐40 domain protein 7 (FBXW7) for MYCN binding and enabled MYCN‐mediated tumourigenesis in a C‐terminal domain‐dependent manner.ConclusionsOur study revealed a previously uncharacterized mechanism of CCNB1IP1‐mediated MYCN protein stability and will provide new prospects for precise treatment of MYCN‐AM NB based on MYCN‐CCNB1IP1 interaction.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Molecular Medicine,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3