Feasibility of LoRa‐based Infrastructure‐to‐Vehicle (I2V) communication for road weather information systems

Author:

Soy Hakkı1ORCID,Fatih Ateş T.2ORCID,Osman Özkan A.1ORCID

Affiliation:

1. Electrical and Electronics Engineering Department Necmettin Erbakan University Konya Turkey

2. Vocational School of Trade and Industry KTO Karatay University Konya Turkey

Abstract

SummaryA road‐weather information system (RWIS) is an attractive application in the context of intelligent transportation systems (ITSs), which is used where climatic conditions and meteorological events worsen traffic safety. The primary goal is to significantly reduce potential accidents by sending early warning messages to prompt immediate action. For this purpose, road weather information stations are placed at critical points on the highways. In addition to responsible transportation agencies, enabling direct warning message transfer from roadside infrastructure to vehicles can significantly improve the effectiveness of a typical RWIS application. Dedicated short range communication (DSRC) and cellular vehicle to everything (C‐V2X) technologies are extensively used for data exchange between vehicles (V2V) and between vehicles and road infrastructure (V2I or I2V) under the umbrella term of vehicle‐to‐everything (V2X) communications. Latency and coverage are key performance indicators of the vehicular network that determine how drivers react to risks in adverse road and weather conditions. V2X‐based connectivity mainly aims to offer low latency in message delivery, but it is not possible to obtain a wide‐range coverage due to significant propagation loss in the dedicated 5.9 GHz ITS frequency band. In this study, we presented a long range (LoRa)‐based RWIS application that uses I2 V communication at sub‐GHz bands. Our main contribution is proposing a novel method for RWIS implementations, where the LoRa gateways run in a half‐duplex way to collect information from road weather information stations in the uplink channel and then broadcast warning messages to vehicles in the downlink channel. To validate the applicability of the proposed method, we presented a feasibility study that includes transmission range and latency analysis. Our theoretical calculations' results validate the more extended transmission range and applicability of LoRa connectivity on RWIS applications, especially for common scenarios like black ice where the climate risks do not occur suddenly. We also showed that our methodology would be beneficial due to the ability to offer wide coverage, especially in the areas where cellular base stations have not yet existed or V2X road infrastructure has not yet been established.

Publisher

Wiley

Reference60 articles.

1. Statistics of road traffic accidents in Europe and North America.Tech. Rep. ECE/TRANS/295 Geneva Switzerland  United Nations Economic Commision for Europe;2021. https://unece.org/transport/publications/2021-statistics-road-traffic-accidents-europe-and-north-america

2. Accident risk of road and weather conditions on different road types

3. Effect of Adverse Weather Conditions on Vehicle Braking Distance of Highways

4. Potential of Intelligent Transportation Systems in Mitigating Adverse Weather Impacts on Road Mobility: A Review

5. ManfrediJ WaltersT WilkeG et al.Road weather information system environmental sensor station siting guidelines.2005.https://ops.fhwa.dot.gov/publications/ess05/index.htm

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3