Genetically engineering Crambe abyssinica—A potentially high‐value oil crop for salt land improvement

Author:

Qi Weicong123ORCID,Tinnenbroek‐Capel Iris E. M.2,Salentijn Elma M. J.2,Zhang Zhao4ORCID,Huang Bangquan5,Cheng Jihua26,Shao Hongbo1ORCID,Visser Richard G. F.2,Krens Frans A.2,Van Loo Eibertus N.2ORCID

Affiliation:

1. Salt‐soil Agricultural Center, Institute of Agricultural Resources and Environment Jiangsu Academy of Agricultural Sciences Nanjing 210014 PR China

2. Laboratory of Plant Breeding Wageningen University and Research Centre PO Box 386 Wageningen Gelderland 6700 The Netherlands

3. Key Laboratory of Oil Crops in Huanghuaihai Plain, Ministry of Agriculture, P.R. China, Henan Provincial Key Laboratory for Oil Crops Improvement

4. Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture China Agricultural University Beijing 100193 PR China

5. College of Life Sciences Hubei University Wuhan 430062 PR China

6. Life Science and Technology Center China Seed Group Co. Ltd. Wuhan 430000 PR China

Abstract

AbstractCrambe abyssinica (crambe) is a new industrial oil crop that can grow on saline soil and tolerates salty water irrigation. Genetically engineered crambe in which the seed‐oil composition is manipulated for more erucic acid and less polyunsaturated fatty acid (PUFA) would be highly beneficial to industry. In this research, lysophosphatidic acid acyltransferase 2 RNA interference (CaLPAT2‐RNAi) was introduced into the crambe genome to manipulate its oil composition. The result showed in comparison with wild type, CaLPAT2‐RNAi could significantly reduce linoleic and linolenic acid content, simultaneously increasing erucic acid content. Systematic metabolism engineering was then carried out to further study CaLPAT2‐RNAi, combined with the overexpression of Brassica napus fatty acid elongase (BnFAE), Limnanthes douglasii LPAT (LdLPAT), and RNAi of endogenous fatty acid desaturase 2 (CaFAD2‐RNAi). Oil composition analysis on the tranformants' seeds showed that (a) with CaFAD2‐RNAi, PUFA content could be dramatically decreased, in comparison with BnFAE + LdLPAT + CaFAD2‐RNAi, and BnFAE + LdLPAT + CaFAD2‐RNAi + CaLPAT2‐RNAi seeds showed lower linolenic acid content; (b) BnFAE + LdLPAT + CaFAD2‐RNAi + CaLPAT2‐RNAi could increase the erucic acid content in crambe seed oil from less than 66.6% to 71.6%, whereas the highest erucic acid content of BnFAE + LdLPAT + CaFAD2‐RNAi was 79.2%; (c) although the four‐gene combination could not increase the erucic acid content of seed oil to a higher level than the others, it led to increased carbon resource deposited into C22:1 and C18:1 moieties and lower PUFA. Summarily, the present research indicates that suppression of LPAT2 is a new, promising strategy for seed‐oil biosynthesis pathway engineering, which would increase the value of crambe oil.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3