Development of a SARS‐CoV‐2 neutralization assay based on a pseudotyped virus using a HIV system

Author:

Liang Ziteng12,Tong Jincheng2,Wu Xi2,Liu Shuo3,Wu Jiajing4,Yu Yuanling3,Zhang Li2,Zhao Chenyan2,Lu Qiong2,Nie Jianhui2,Huang Weijin2,Wang Youchun123

Affiliation:

1. Chinese Academy of Medical Sciences & Peking Union Medical College Dongcheng District, Beijing China

2. Division of HIV/AIDS and Sex‐transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), WHO Collaborating Center for Standardization and Evaluation of Biologicals NHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products Beijing China

3. Changping Laboratory Changping District, Beijing China

4. Beijing Yunling Biotechnology Co., Ltd. Beijing China

Abstract

AbstractRegarding the extensive global attention to severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) that constitutes an international public health emergency, pseudovirus neutralization assays have been widely applied due to their advantages of being able to be conducted in biosafety level 2 laboratories and having a high safety factor. In this study, by adding a blue fluorescent protein (AmCyan) gene to the HIV system pSG3‐△env backbone plasmid HpaI and truncating the C‐terminal 21 amino acids of the SARS‐CoV‐2 spike protein (S), high‐titer SARS‐CoV‐2‐Sdel21‐AmCyan fluorescent pseudovirus was successfully packaged. The fluorescent pseudovirus was used to establish a neutralization assay in a 96‐well plate using 293T cells stably transfected with the AF cells. Then, parameters such as the ratio of backbone and membrane plasmid, sensitive cells, inoculation of cells and virus, as well as incubation and detection time were optimized. The pseudovirus neutralization assay demonstrated high accuracy, sensitivity, repeatability, and a strong correlation with the luminescent pseudovirus neutralization assay. Additionally, we scaled up the neutralizing antibody determination method by increasing the plate size from 96 wells to 384 wells. We have established a robust fluorescent pseudotyped virus neutralization assay for SARS‐CoV‐2 using the HIV system, providing a foundation for serum neutralization antibody detection, monoclonal antibody screening, and vaccine development.

Funder

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3