Enhancement of heat dissipation rate of a heat sink with perforated fins using CFD and Swarm Intelligence

Author:

Maji Ambarish1,Deshamukhya Tuhin2,Choubey Gautam3ORCID

Affiliation:

1. Department of Mechanical Engineering Seacom Engineering College Howrah West Bengal India

2. Department of Mechanical Engineering Barak Valley Engineering College Nirala Assam India

3. Department of Mechanical Engineering National Institute of Technology (NIT) Silchar Silchar Assam India

Abstract

AbstractThis study aims to enhance heat dissipation in a heat sink by using perforated pin fins. The research specifically explores circular pin fins with circular perforations that taper from one end to the other. Through three‐dimensional computational fluid dynamics (CFD) simulations, the study evaluates the impact of tapered perforations on heat dissipation, performance, and pressure loss in circular fins. The results indicate that fins with perforations consistently achieve higher heat dissipation rates compared to solid fins, up to certain perforation sizes and numbers. Notably, fins with tapering in perforations, where the inner and outer diameters are 4 and 5 mm, respectively, exhibit the highest system performance, with a maximum increase of 6.1% over fins without tapering. Additionally, two advanced swarm intelligence algorithms, Particle Swarm Optimization (PSO) and Teaching Learning Based Algorithm (TLBO), were employed to assess the performance of heat sinks with both converging and diverging tapered perforations. The optimized results from TLBO were compared with those from PSO for validation. An intriguing discovery of this research is that fins with converging perforations achieve the highest system performance, followed by fins without tapering, and then fins with diverging perforations.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3