Prediction and uncertainty quantification of compressive strength of high‐strength concrete using optimized machine learning algorithms
Author:
Affiliation:
1. School of Civil Engineering Xinyang College Xinyang China
2. School of Civil Engineering Southeast University Nanjing China
3. School of Civil Engineering Central South University Changsha China
Funder
Henan Provincial Science and Technology Research Project
Publisher
Wiley
Subject
Mechanics of Materials,General Materials Science,Building and Construction,Civil and Structural Engineering
Link
https://onlinelibrary.wiley.com/doi/pdf/10.1002/suco.202100732
Reference66 articles.
1. ACI defines high‐performance concrete;Russell HG;Concr Int,1999
2. Durability of high-strength concrete in ammonium sulfate solution
3. Design for durability: The key to improving concrete sustainability
4. Prediction of the compressive strength of no-slump concrete: A comparative study of regression, neural network and ANFIS models
5. Nondestructive testing of strength of sleeve grouting material in prefabricated structure based on surface hardness method
Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Comparative study on the prediction of the unconfined compressive strength of the one-part geopolymer stabilized soil by using different hybrid machine learning models;Case Studies in Construction Materials;2024-12
2. Comparative analysis of cement grade and cement strength as input features for machine learning-based concrete strength prediction;Case Studies in Construction Materials;2024-12
3. Prediction of the Unconfined Compressive Strength of a One-Part Geopolymer-Stabilized Soil Using Deep Learning Methods with Combined Real and Synthetic Data;Buildings;2024-09-13
4. Optimizing compressive strength in sustainable concrete: a machine learning approach with iron waste integration;Asian Journal of Civil Engineering;2024-05-20
5. A optimum prediction model of chloride ion diffusion coefficient of machine-made sand concrete based on different machine learning methods;Construction and Building Materials;2024-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3